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Abstract
We have presented a theoretical study of electrorotation assay based on the
spectral representation theory. We consider unshelled and shelled spheroidal
particles as an extension to spherical ones. From the theoretical analysis,
we find that the coating can change the characteristic frequency at which the
maximum rotational angular velocity occurs. The shift in the characteristic
frequency is attributed to a change in the dielectric properties of the bead–
coating complex with respect to those of the uncoated particles. By adjusting
the dielectric properties and the thickness of the coating, it is possible to obtain
good agreement between our theoretical predictions and the assay data.

1. Introduction

When a suspension of colloidal particles or biological cells is exposed to an external electric
field, the analysis of the frequency-dependent response yields valuable information on various
processes, like the structural (Maxwell–Wagner) polarization effects [1, 2]. The polarization
is characterized by a variety of characteristic frequency-dependent changes. While the
polarization of biological cells can be investigated by the method of dielectric spectroscopy [3],
conventional dielectrophoresis and electrorotation (ER) analyse the frequency dependence of
translations and rotations of single cells in an inhomogeneous and rotating external field,
respectively [4,5]. With the recent advent of experimental techniques such as automated video
analysis [6] as well as light scattering methods [2], the cell movements can be accurately
monitored. In ER, the frequency dependence of the polarization leads to a phase shift between
the induced dipole moment and the rotating field, giving rise to a torque acting on the particle
which causes the rotation of the individual particle.

The phenomenon of ER can be developed into a useful technique known as ER assay.
The ER assay combines antibody technology with ER to detect analytes in aqueous solutions.
The analyte to be detected is bound to a latex bead of known dielectric properties to form the
analyte-bead complex, which causes a change in the dielectric properties. The change can
be detected by ER technique, thus allowing the rapid and accurate detection of analytes in
aqueous solutions. This method can be used to detect various analytes, the selection of which
can be controlled by the proper choice of binding agents.

0953-8984/02/061213+09$30.00 © 2002 IOP Publishing Ltd Printed in the UK 1213

http://stacks.iop.org/cm/14/1213


1214 J P Huang and K W Yu

In this work, we propose the use of the spectral representation [7] for analysing the ER of
particles in suspensions. The spectral representation is a rigorous mathematical formalism for
the effective dielectric constant of a two-phase composite material [7]. It offers the advantage
of the separation of materials parameters (namely the dielectric constant and conductivity) from
the cell structure information, thus simplifying the study. From the spectral representation,
one can readily derive the dielectric dispersion spectrum, with the dispersion strength as well
as the characteristic frequency being explicitly expressed in terms of the structure parameters
and the materials parameters of the cell suspension (see section 2.2 below). The actual shape
of the real and imaginary parts of the permittivity over the relaxation region can be uniquely
determined by the Debye relaxation spectrum, parametrized by the characteristic frequencies
and the dispersion strengths. So, we can study the impact of these parameters on the dispersion
spectrum directly. The same formalism has been used recently to study the dielectric behaviour
of cell suspensions [8].

In this connection, we mention alternative methods—namely, solving Laplace’s equation
directly and Gimsa’s approach based on equivalent circuits [1, 2]. To our knowledge, none of
these methods separates microstructure parameters from materials information.

2. Formalism

We regard a suspension as a composite system consisting of spherical or spheroidal particles
of complex dielectric constant ε̃1 dispersed in a host medium of ε̃2. A uniform electric field
E0 = E0ẑ is applied to the composites along the z-axis. We briefly review the spectral
representation theory of the effective dielectric constant to establish notation.

2.1. Spectral representation

The spectral representation is a mathematical transformation of the complex effective dielectric
constant ε̃e. In its original form [7], a two-phase composite material is considered, in which
inclusions of complex dielectric constant ε̃1 and volume fraction p are randomly embedded in
a host medium of dielectric constant ε̃2. The complex effective dielectric constant ε̃e will in
general depend on the constituent dielectric constants, and the volume fraction of inclusions,
as well as the detailed microstructure of the composite materials.

The essence of the spectral representation is defining the following transformations. If
we denote a complex material parameter

s̃ =
(

1 − ε̃1

ε̃2

)−1

(1)

then the reduced effective dielectric constant

w(s̃) = 1 − ε̃e

ε̃2
(2)

can be written as

w(s̃) =
∑
n

Fn

s̃ − sn
(3)

where n is a positive integer, i.e., n = 1, 2, . . . , and Fn and sn are the nth microstructure
parameters of the composite materials [7]. In equation (3), 0 � sn < 1 is a real number, while
Fn satisfies a sum rule [7]:∑

n

Fn = p (4)

where p is the volume fraction of the suspended cells.
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As a result, the spectral representation is a useful theory which helps separate the
materials properties from the geometric information. In what follows, we illustrate the
spectral representation using a capacitance with simple geometry. In particular, a parallel-
plate capacitor is considered as an example. We will discuss two cases, namely, the series
combination and the parallel combination.

In the first case, if one inserts a dielectric slab of dielectric constant ε̃1 and thickness h1,
as well as a dielectric of dielectric constant ε̃2 and thickness h2 (of the same area A) into a
parallel-plate capacitor of total thickness h = h1 + h2, the overall capacitance C is given by

C−1 = C−1
1 + C−1

2

where C1 = ε̃1A/h1 and C2 = ε̃2A/h2, A being the area of a plate. On the other hand, we may
define the equivalent capacitance as C = ε̃eA/h, where ε̃e is the effective dielectric constant.
That is, we replace the composite dielectric by a homogeneous dielectric of dielectric constant
ε̃e.

Let ε̃1 = ε̃2(1 − 1/s̃); we can express C in the spectral representation:

C = Aε̃2

h
− Aε̃2h1/h

2

s̃ − h2/h
.

In accord with the spectral representation, one may introduce w(s̃) = 1 − ε̃e/ε̃2, which is in
fact the same as w(s̃) = 1 − C/C0, where C0 is the capacitance when the plates are all filled
with a dielectric material of dielectric constant ε̃2—that is, C0 = ε̃2A/h. Thus we obtain

w(s̃) = h1/h

s − h2/h

from which we find that the material parameter is separated from the geometric parameter.
Comparison of w(s̃) with equation (3) yields

F1 = h1/h s1 = h2/h.

We should remark that F1 obtained herein is just equal to the volume fraction of the dielectric of
dielectric constant ε̃1, and that s1 satisfies 0 � s1 < 1, as required by the spectral representation
theory.

Next we consider the parallel combination. If one inserts a material of dielectric constant
ε̃1 and area w1 as well as a dielectric of dielectric constant ε̃2 and area w2 (of the same thickness
h) into a parallel-plate capacitor of total area A = w1 + w2, the overall capacitance C is given
by

C = C1 + C2

where C1 = ε̃1w1/h and ε̃2 = ε̃2w2/h. Similarly, after introducing the effective dielectric
constant ε̃e, we may define the overall capacitance as C = ε̃eA/h.

Again, in the spectral representation, let ε̃1 = ε̃2(1 − 1/s̃); then

C = ε̃2A

h
− ε̃2w1

hs̃
.

Writing w(s̃) = 1 − C/C0, we obtain

w(s̃) = w1/A

s̃
.

From this equation, the material parameter is also found to be separated from the geometric
parameter. It is clear that F1 = w1/A, i.e., the volume fraction of the dielectric of dielectric
constant ε̃1, and s1 = 0.
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2.2. Shelled spheroidal particle model

For inclusions of arbitrary shape, the spectral representation can only be solved numerically [7].
However, analytic solutions can be obtained for isolated spherical and ellipsoidal particles.
For dilute suspensions of prolate spheroidal particles, the particles can be regarded as
noninteracting. The problem is simplified to the calculation of sn with a single particle, which
can be solved exactly.

In fact, the suspension of shelled spheroidal particles dispersed in a host medium is a
three-component system. Although the spectral representation is generally valid for two-
component composites, we have recently shown that it also applies to composites of coated
spheres randomly embedded in a host medium [9]. Similarly, we will show that the spectral
representation also applies to the suspension of spheroidal particles of complex dielectric
constant ε̃1 coated with a shell of dielectric constant ε̃s dispersed in a host medium of ε̃2,
where

ε̃ = ε + σ/i 2πf (5)

where f is the frequency of the applied field. In what follows, we will show that from the
spectral representation, one can obtain the analytic expressions for the characteristic frequency
at which the maximum ER velocity occurs. The depolarization factors of the spheroidal
particles will be described by a sum rule

Lz + 2Lxy = 1 (6)

where 0 < Lz � 1/3 and Lxy are the depolarization factors along the z- and x- (or y-) axes
of the spheroidal particle, respectively. In fact, Lz = Lxy = 1/3 just indicates a spherical
particle.

The phenomenon of ER is based on the interaction between a time-varying electric field E

and the induced dipole moment M . The dipole moment of the particle arises from the induced
charges that accumulate at the interface of the particle. As the prolate spheroidal particles are
easily oriented along their long axes by the rotating field, we consider the orientation in which
the long axis lies within the field plane [10]1. In fact, the extension of our theory to deal with
oblate spheroid is straightforward. In doing so, it suffices to consider 1/3 < Lz < 1 and the
formalism will remain unchanged.

The angle between M and E is denoted by θ , where θ = ω × time and ω = 2πf is the
angular velocity of the rotating electric field. The torque acting on the particle is given by the
vector cross product between the electric field and the dipole moment, so only the imaginary
part of the dipole moment contributes to the ER response. In the steady state, the frequency-
dependent rotation speed �(f ), which results from the balance between the torque and the
viscous drag, is given by

�(f ) = −F(ε2, E, η) Im(b̃z〈cos2 θ〉 + b̃xy〈sin2 θ〉) = −F(ε2, E, η) Im(b̃z/2 + b̃xy/2) (7)

where E is the strength of the applied electric field and F is a coefficient which is inversely
proportional to the dynamic viscosity η of the host medium. For spherical cells, F =
−ε2E

2/2η. In equation (7), Im(· · ·) indicates the imaginary parts of (· · ·), and the angular
brackets denote a time average. Since the angular velocity of the rotating field is much greater
than the ER angular velocity, i.e., ω 	 �, the time averages are just equal to 1/2. For a single
coated spheroidal particle, the dipole factor b̃z is given by [11]

b̃z = 1

3

(ε̃s − ε̃2)[ε̃s + Lz(ε̃1 − ε̃s)] + (ε̃1 − ε̃s)y[ε̃s + Lz(ε̃2 − ε̃s)]

(ε̃s − ε̃1)(ε̃2 − ε̃s)yLz(1 − Lz) + [ε̃s + (ε̃1 − ε̃s)Lz][ε̃2 + (ε̃s − ε̃2)Lz]
(8)

1 It is not always necessary that prolate particles orient with their longest axis in the field plane. Depending on
frequency, object and medium properties, a perpendicular orientation can be observed, see e.g., [10].
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where y is the volume ratio of the core to the whole coated spheroid, while bxy can be obtained
by replacing Lz with Lxy in equation (8).

We are now in a position to represent bz and bxy in the spectral representation. Let
ε̃1 = ε̃2(1 − 1/s̃), and assume x = ε̃s/ε̃2; we obtain

b̃z = NP +
F1

s̃ − s1
(9)

where NP denotes the nonresonant part [9] which vanishes in the limit of unshelled spheroidal
cells. In equation (9), the various quantities are given by

s1 = −β

γ
(10)

F1 = −x2y

αγ
(11)

NP = −Lz + Lzy + x(−1 + 2Lz + y − 2Lzy) + x2(1 − Lz − y + Lzy)

α
(12)

where

α = 3Lz − 3L2
z − 3Lzy + 3L2

zy + x(3 − 6Lz + 6L2
z + 6Lzy − 6L2

zy)

× x2(3Lz − 3L2
z − 3Lzy + 3L2

zy)

β = −Lz + L2
z + Lzy − L2

zy + x(−L2
z − Lzy + L2

zy)

γ =Lz − L2
z − Lzy + L2

zy + x(1 − 2Lz + 2L2
z + 2Lzy − 2L2

zy) + x2(Lz − L2
z − Lzy + L2

zy).

Note that we have assumed x to be a real number, which will be justified below. After
substituting ε̃ = ε + σ/i2πf into equation (9), we rewrite b̃z after simple manipulations as

b̃z =
(

NP +
F1

s − s1

)
+

δε1

1 + if/fc1
(13)

with s = (1 − ε1/ε2)
−1 and t = (1 − σ1/σ2)

−1, where

δε1 = F1
s − t

(t − s1)(s − s1)

fc1 = 1

2π

σ2

ε2

s(t − s1)

t (s − s1)
.

Similarly, we may rewrite b̃xy as

b̃xy =
(

NP′ +
F2

s − s2

)
+

δε2

1 + if/fc2
. (14)

Therefore, we obtain

δε2 = F2
s − t

(t − s2)(s − s2)

fc2 = 1

2π

σ2

ε2

s(t − s2)

t (s − s2)
.

Note that NP′, s2, and F2 are obtained by replacing Lz with Lxy in the expressions for NP,
s1, and F1, respectively.

We have thus predicted that two characteristic frequencies may appear for uncoated or
coated spheroidal particles. Previous theories were often limited to spherical particles, i.e.,
Lz = Lxy = 1/3. Therefore, only one characteristic frequency exists. We should remark that
even though two characteristic frequencies are predicted, only one of them is dominant (see
below).
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Figure 1. Upper panels: s1 and fc1 plotted against x for different Lz at z = 2. Lower panels: s2
and fc2 plotted against x for different Lz at z = 2.

3. Numerical calculations

The model put forward in the previous section applies to various systems such as biological cells
and polystyrene beads. Here we perform numerical calculations to investigate the characteristic
frequency. Let s = 1.1, t = −0.005, and ε2 = 80ε0, where ε0 is the dielectric constant of the
vacuum. In figure 1, we investigate the effect of particle shape on s1 and fc1 (upper panels), and
s2 and fc2 (lower panels), for z = 2 and σ2 = 2.9 × 10−5 S m−1, where z = 1/y, and z1/3 > 1
reflects the thickness of the shell (or coating). As is evident from the figure, an increase in the
dielectric constant ratio x leads to a red-shift of the characteristic frequency. For a certain x, a
small depolarization factor—i.e., the particle deviates substantially from spherical shape, may
yield a red-shift too.

In figure 2, we investigate the effect of the depolarization factor on the quantities
−Im[bz]/2 and −Im[bz/2 + bxy/2]. It is evident that the effect of bxy on the peak is small
when Lz is small, whereas it is large when Lz is large. Generally speaking, the dipole moment
along the x- (or y-) axis strongly affects both the location and the magnitude of the peak of the
rotation speed. For spheroidal particles, only one peak is found, and the other peak predicted
by the theory may be too small to observe.
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Figure 2. −Im(bz/2 + bxy/2) and −Imbz/2 are plotted against frequency ω for different Lz at
z = 6, x = 2, and σ2 = 2.9 × 10−5 S m−1.
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Figure 3. s1 and fc are plotted versus x for different z as Lz = 1/3 (i.e., spherical shape).

In order to validate our theory, here we considered the spherical particles as a limiting
case of our model. In figure 3, s1 and fc are plotted versus x for a spherical bead (Lz = 1/3),
for different z at σ2 = 2.9 × 10−5 S m−1. For large x, the shell thickness has only a minor
effect on the characteristic frequency. Moreover, a thick shell leads to a red-shift (blue-shift)
of the characteristic frequency appearing when x > 1 (x < 1). Also, all the fc predicted for
the different z are smaller (larger) than that predicted at z = 1 (i.e., for the uncoated bead) for
x > 1 (x < 1).

At x = 1, i.e., when the shell has the same dielectric constant as the host, all the
characteristic frequencies predicted for different thicknesses of shell are the same. Similar
conclusions can be obtained not only for spherical shape, but also for prolate spheroidal shape
(not shown here).

We attempt to fit our theoretical predictions with experimental data, which are extracted
from an assay [12]2. In this assay, three cases were studied, all dealing with spherical

2 See also http://www.ibmm.informatics.bangor.ac.uk/pages/science/rot.htm for the basic science of ER.
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Figure 4. Curve fitting for Lz = 1/3 (i.e., spherical particles).

particles—that is, uncoated beads, beads coated with an antibody with specificity for Giardia
(shell 1), and beads coated with an antibody with specificity for Cryptosporidium (shell 2).
The bead diameter is 6 µm according to Burt et al [12], while Giardia and Cryptosporidium
are both 0.8 µm in diameter. Let σ2 = 2.18 × 10−5 S m−1, z = 6, x = 7.06 (shell 1) and
4.63 (shell 2), and F = 0.353 (without shell), 1.629 (shell 1), and 2.278 (shell 2). Good
agreement between our theoretical predictions and the assay data is shown in figure 4. From
our theory, it is easy to find the corresponding characteristic frequencies at which maximum
rotational angular velocity occurs, fc = 4.755 × 105 Hz (without shell), 105 Hz (shell 1),
and 1.415 × 105 Hz (shell 2). From this, we find that the coating leads to a red-shift of the
characteristic frequency. This is because the dielectric properties of the bead–coating complex
have been changed.

We used x > 1 in our fitting, i.e., x = 7.06 and 4.63 for beads coated with an antibody
with specificity for Giardia and Cryptosporidium, respectively. It is known that biological
cells, such as Giardia and Cryptosporidium, have structures such as the cell wall, the plasma
membrane, and the cytoplasm, where the cell wall has a larger conductivity than the suspending
medium. Hence, we may safely take x > 1.

4. Discussion and conclusions

Here we would like to add some comments. We would like to clarify the assumptions in our
model in more detail. In fact, there is only one peak (rather than two) for each polarization
in our theory. This is because we assumed the ratio of the shell to the host dielectric constant
x to be a real and positive number. If we had retained the (small) imaginary part of x in
our calculation, then we would have had two peaks for each polarization. The conductivity-
dominated peak would have occurred at substantially lower frequency. Thus, the effect of the
neglect of the imaginary part of x is to drop the lower-frequency peak. Moreover, according
to our calculations, there is one dominant pole associated with bz and two (degenerate) sub-
dominant poles associated with bxy in the spectral representation. Thus, for shelled particles
in the present work, only one peak has been shown.

We developed simple equations to describe the ER of particles in a suspension from
the spectral representation. These equations serve as a basis for describing the parameter
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dependence of the polarization and thereby enhance the applicability of various cell models
in the analysis of polarization mechanisms. In this connection, the shelled spheroidal particle
cell model may readily be extended to a multi-shell cell model. However, we believe that the
multi-shell nature of a cell may have only a minor effect on the ER spectrum.

We have considered the case of an isolated cell, which is a valid assumption for low
concentration of cells. However, for a higher concentration of cells, we should consider the
mutual interaction between cells. For a randomly dispersed cell suspension, we may replace
the dielectric constant of the host medium by the effective dielectric constant of the whole
suspension.

When a strong rotating electric field is applied to a suspension, the induced dipole moment
will induce an overall attractive force between the polarized cells, leading to rapid formation
of sheet-like structures in the plane of the rotating field. In reality there is a phase shift
between the induced dipole moment of the structure and the applied field, and this can lead to
ER. However, the situation will be much more difficult than the single-cell case that we have
studied because the many-body as well as multipolar interactions between the particles will
produce a complicated ER spectrum. Fortunately, our recently developed integral equation
formalism [13] can definitely help in solving for the Maxwell–Wagner relaxation spectrum.

In summary, we have presented a theoretical study of ER assay based on the spectral
representation theory. We consider unshelled and shelled spheroidal particles as an extension
to spherical ones. From the theoretical analysis, we find that the coating can change the
characteristic frequency at which the maximum rotational angular velocity occurs. By
adjusting the dielectric properties and the thickness of the coating, it was possible to obtain
good agreement between our theoretical predictions and the assay data.

Note added in proof. We have recently reported the electrorotation of two spherical particles [14].
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